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Functional renormalization group for anisotropic depinning and relation to branching processes
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Using the functional renormalization group, we study the depinning of elastic objects in presence of anisot-
ropy. We explicitly demonstrate how the Kardar-Parisi-Zh&gZ) term is always generated, even in the limit
of vanishing velocity, except where excluded by symmetry. This mechanism has two steps. First a nonanalytic
disorder-distribution is generated under renormalization beyond the Larkin length. This nonanalyticity then
generates the KPZ term. We compute héunction to one loop taking properly into account the nonanalyt-
icity. This gives rise to additional terms, missed in earlier studies. A crucial question is whether the nonrenor-
malization of the KPZ coupling found at 1-loop order extends beyond the leading one. Using a Cole-Hopf-
transformed theory we argue that it is indeed uncorrected to all orders. The resulting flow equations describe
a variety of physical situations: We study manifolds in periodic disorder, relevant for charge density waves, as
well as in nonperiodic disorder. Further the elasticity of the manifold can either be short(&iRger long
range(LR). A careful analysis of the flow yields several nontrivial fixed points. All these fixed points are
transient since they possess one unstable direction towards a runaway flow, which leaves open the question of
the upper critical dimension. The runaway flow is dominated by a Landau-ghost mode. For LR elasticity,
relevant for contact line depinning, we show that there are two phases depending on the strength of the KPZ
coupling. For SR elasticity, using the Cole-Hopf transformed theory we identify a nontrivial 3-dimensional
subspace which igwvariant to all ordersand contains all above fixed points as well as the Landau mode. It
belongs to a class of theories which describe branching and reaction-diffusion processes, of which some have
been mapped onto directed percolation.
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[. INTRODUCTION been argued6-8] that configurations at depinning can be
mapped onto directed percolation ih=1+1 dimensions,
The physics of systems driven through a random environwhich yields indeed a roughness exponefyp=v, /v,
ment is by construction irreversible. The fluctuation dissipa-=0.630=0.001, a dynamical exponert 1, a velocity ex-
tion relation does not hold and one expects the coarsponent Spp=v,—v,~0.636 and a depinning correlation
grained description to exhibit signatures of this irreversibil-length exponentvpp=r;=1.733+0.001. Some higher di-
ity. In driven manifolds it has indeed been shown that nonimensional extensions of these arguments in terms of block-
linear Kardar-Parisi-ZhantKPZ) terms are generated in the ing surfaces have been propogée-12, but there is, to our
equation of motion, except when forbidden by Symmetryknowledge, no systematic field theoretical connection be-
[1,2]. A question which was debated for long time is whether'Ween these problems. . . .
at zero temperature these terms vanish as the velocity Recently we have reexamlned the funct|o_nal renormaliza-
—07. This is the limit which is relevant to describe depin- tion grou_p(F_RG) aPproaCh' |_ntroduced prewousﬂ)‘l_:%—lﬂ
ning (f— 7). It was found some time ago that there are twoto describe isotropic depinning to one loop withinea 4

; . . . : —d expansion. We constructdd8,19 a consistent renor-
main universality classes for interface depinniSg-5|. The malizable field theoretical description up to two loops, taking

cpnclus_ion was reached mainly_on the basis .of numericqtﬁIto account the main important physical feature—and
simulations, which measure the interface veloeify) as a jfficylty—of the problem, namely that the second cumulant
function of an average imposed slopeas well as various 5 (y) of the random pinning force becomes nonanalytic be-
arguments related to symmetry. In the first universality classyond the Larkin scale. The 2-loop result for the expongnt
the isotropic depinning clasdD), the coefficients of the  ghows deviations from the conjectUrs?] ¢ = (4—d)/3. The
KPZ term vanishes as—0" and the KPZ term is thus not reason is the appearance of “anomalous” corrections caused
needed in the field theoretic description. In the second clasgy the nonanalytic renormalized disorder correlator. The
the anisotropic depinning clagaD), v(6) still depends or®  2-loop corrections proved to be crucial to reconcile theory
asf—f. and the KPZ term is present evenwat:-0". For  and numerical simulationg8,19.

AD, numerical simulations based on cellular automaton The aim of this paper is to extend this FRG analysis to the
models which are believed to be in the same universalityuniversality class of anisotropic depinning. We first show
class[6,7], indicate a roughness expongft0.63 ind=1, that beyond the Larkin length, the KPZ term is indeed gen-
{~0.48 ind=2, and{~0.38 ind=3 [10]. Recent simula- erated ab=0", as long as it is not forbidden by symmetry.
tions on a continous mod¢B2] give more precise results: We explicitly compute the lowest order corrections for a
{=0.635+0.005 @=1),{=0.45+0.01 d=2), and ¢ simple model studied in recent simulatid,21]. Next we
=0.25+0.02 (d=3). On a phenomenological level it has derive the FRG-flow equations for the second cumulant
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A(u) in a 4—€ expansion. In a previous study, Stepanow F(x,u)F(x",u’)=A(u—u’)8%x—x"). 2.2

[22] considered the model to one loop, but did not properly

take into account the nonanalyticity of the renormalized dis-Temperature can be taken into account as an additional white
order. Since this is physically important, we reexamine thenoise 5(x,t) on the right-hand sidéRHS) of Eq. (2.1) with
problem here. Indeed, we find several new important »(x,t)7(x’,t"))=27Ts(t—t")5(x—x"), but we will fo-
“anomalous” corrections, including the one which generatescus here o =0.

the KPZ term in the first place, as well as terms correcting pjsorder averaged correlation functiong A Uy,])
the B function. We then introduce an equivalent description:<A[uxt]>$ and response functionsm

in terms of Cole-Hopf transformed fields. This description is:<u A[u])s can be computed from the dynamical action
not only much simpler to study in perturbation thedeyg., X s

to two loops it reduces the number of diagrams by an order

of magnitudg, but it allows us to obtain a number of results SZJ O 79— CIZ) Uy — N FUixp)

to all orders We argue that the coefficient/'c which mea- Xt

sures the strength of the KPZ nonlinearity is uncorrected to 1

all orders. We also determine a nontrivial subspace of the T3 ) Drelxtr A (U™ Uyer) = Ltﬁxtfxt- (2.3

disorder correlators in the form of simple exponentials which

is an exact invariant of the FRG to all orders. In the Cole-rpe yniform driving forcef,,=f>0 (beyond threshold at
Hopf variables it is reformulated as the field theory of a_._ Lo L

e . . : . 1T=0) may produce a velocity =d(u,)>0, a situation
specific branching process, or equivalently reaction-diffusion

process. which we study by going to the comoving franteshere
our flow equations allow to study both periodic disorder, {Uxt) =0) Shifting uq—uy+ot, resulting in f—f—zu.
relevant for charge density wavé§DW), and nonperiodic | 1S IS implied below: Eachl is of the form A (Uy; — Uyyr
disorder, relevant for lines or interfaces in a random environ-+v(+t_t ), and_we always_cons,lder the quaSI_statlc linit
ment. In both cases we find several nontrivial fixed points =0 - Perturbation theory is performed both in KPZ and
All these fixed points possess at least one unstable directigfSorder terms, using the free response function
and should thus be associated to transitions. It seems that
perturbatively the large scale behavior is dominated by a
runaway flow, as it is in the standard KPZ probl¢23,24].
The difference is that its direction is a nontrivial function
A(u) in functional space. Analysis of the above mentioned lIl. GENERATION OF THE KPZ TERM
in;/arli)ant sEbspace suggeits that the flow goels towarﬁs aSPe-| i section we show how the irreversitigonpoten-
cific branching process. The present RG analysis is however ; . N
unable to atta?npthe nonpertufbative fixed poin){. Thus, it alsg{'al)fKPZ term |s| generat%?, even in thefl'm't_.’o ' srt]art— I
does not allow to strictly decide whethdre=4 is the upper Ing from a purely reversible equation of motion, where a

critical dimension of the anisotropic depinning problem forces are derivatives of a potential.
e . P P 9p ' Let us first consider the model recently studied numeri-
which is an open issue.

Finally, since there are indications that KPZ terms may beCally by Rosso and KrautfP0,21,33, where the elastic en-

H — 2 4
needed in the description of the motion of a contact [, ergy |stE(V.uX), and, e.g.E(e)—(c(Z)a_ +(ca/4)6". The
. . . - relevant continuum equation of motion is
we have studied manifolds with long range elasticity and the
simplest KPZ term. We determine the critical dimension o= E"(Iolo) Uvi— F (X Uvet vt) + f—
above which this KPZ term is irrelevant, as well as the M9t = B (9l Sl F (XU ot) G 3.1)

roughness at crossover.

A _ (t_+'\n2 ,
(OgrU_go=Rgi-t=7 temttha%ogg—t).
(2.4

Note first that wherc,= 0, which corresponds to the isotro-
pic depinning class WitfE(6) =(c/2)#?, the generation of
the KPZ term is forbidden by the statistical tilt symmetry
We consider ad-dimensional interfacéin d+1 embed- (STS, i.e., the invariance of the equation of motion under a
ding dimensions with no overhangs parameterized by a shift u,— uy+ f, with f,=hx (or more generally the cova-
single component height field(x). The case where the dis- riance under an arbitrarf,) [29]. Whenc,#0 the model
order is periodic corresponds to a single component CDW irtloes not obey STS and the KPZ term is not forbidden, and
d dimensions. The common starting point is the equation ofndeed it is generated at finite velocity>0. This consider-
motion ation alone is insufficient to show that it is still generated as
v—0 since in that limit the symmetrny— —u should forbid
it. Indeed, if one performs conventional perturbation theory
with ananalyticdisorder correlatoA (u), one does immedi-
ately find that the KPZ term vanishes as-0". However,
with friction 7, a driving forcef,;,=f and in the case of one needs a mechanism by whichpas 0", the symmetry
long-range elasticity we replade Fouriep q2uq by |ag[“uqs  u— —u remains broken.
(with mostly «=1) in the elastic force. The pinning force  As we now show, this mechanism is provided by the
F(x,u) is chosen Gaussian with second cumulant nonanalytic nature of the disorder. We know from studies of

Il. MODEL

NFUy = CI2Uy+ N (IxUy) 2+ F(X,Ug) +Fr  (2.0)
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[A’(O+)+)\A(O)]fkk7. (3.9

Thus we have shown that the symmetry» —u which for-
bids the KPZ term(e.g., in an analytic perturbation theory
) . ] i ] whereA’(0)=0), is broken here at=0" by the nonana-
FIG. 1. The diagram generating the irreversible nonlinear KPZIytiC term, and that a KPZ term is indeed generated at depin-
term with one disorder vertefnotations are as in RefElS], [19]) ning. As in our previous studii8,19 the only assumption is
and onec, vertex(the bars denote spatial derivatiyes that the interface always advances forwésdthat backward
motion can be neglected in the steady staseipported in
this single component model by no passing theorems
[16,20,2]. By providing a physical mechanism, this explicit
calculation confirms the argument given [i#] based on a

isotropic depinning[14,16,18,19 that at T=0 the coarse
grained disorder becom@®snanalytic(NA) beyond the Lar-
kin length[28,30. We show below that this is also the case

for the situation considered here. : . -
Using the techniques developed in Reft8,19 the cor- ]Ic_oetglgn type estimate of the angledependence of the critical

responding perturbation theory, with a nonanalyi@) be- Note the sign of the generated KPZ term. Siacg0*) is

comes(see Fig. 1 for notation negative\ is positive as found in simulatiori8,4]. It is a bit
counterintuitive that the surface should become stiffer. Also

A= = ~f%/ / /e—(t+t’)k2 (K252 + 2(kp)?) it effectively correspo_nd_s to the generation of a positive av-
; P Jizo Jrso Ji erage curvature. This is presumably through nonanalytic
XA (Ug gy — Ugg +0(E+ 1)) coarse grained configurations of the strifiy d=1) since

(3.2 otherwise [§V2u=[Vu]§ would grow asL which is un-
physical, while cusps in(x) allow for such a result.
At T=0, u, has vanishing expectation value and the argu- This model is only a particular case, which shows that the
ment of A" becomes (t+t'). Using that anisotropic depinning class is rather broad and not limited to
anisotropic disorder. In general, unless they are excluded by
symmetry, KPZ terms will appear. One such case, corre-
sponding to a flux line in 1 dimensions which moves
perpendicular to itself was considered[#]. There disorder

1
A(u)=A(O)+A’(O+)|u|+5A”(0+)u2+---, (3.3

A'(u)=sgru)+A"(0 ) )u+--- (3.9 is anisotropic with correlatora, and A, for the pinning
force. In the case of isotropic disordag=A,,, exact rota-
and observing that, t' >0, Eq.(3.2) can be written as tional invariance(which in infinitesimal form readsi—u

+ 0%, x—Xx—6u) should suffice to exclude the KPZ term.
G4 (KR 22 2 We have indeed checked this by adding to the above MSR
ON=— 2o )& (k“p=+2(kp)%) action withA=0 the nonlinear terms d#]

rin+ nia+ ' 2
X[A"(0")+A"(0 )u(t+t')+0(w9)]. (3.5 58:_ftaxt[szuxt(Vuxt)2+Bf(vuit)]
X
The leading term of this expansion, which is the only UV-
diverging one for 4~d>2, is obtained by setting=0. In-

N 2 _
tegrating ovet, t’ and using the radial symmetry lngives Ltt,uxtuxt’[c(vuxt) +D VUV Uy JA (U U

2\ [ A’(0") (3.10
57\=—C4(1+—)f—2+0(v). (3.6)
d k The generated KPZ term reads to lowest order
Similarly, there is a correction to, which reads 1
5)\=2(—A+C+D)A’(O*)fp. (3.11
k
A(0) 1 2
dc=cq =/k 2 t3 (3.7  Since the equation of motion of Rg#] for A,=A}, corre-

sponds toA=—1, D=C=1/2, one checks to lowest order
that the KPZ term is indeed not generated. Although we have
1 not checked it further, it is clear that this property should
A(o)f_z_ (3.9 extend to all orders. In the anisotropic classcana priori
kK be of any sign. The argument given [i] suggests that for
the flux-line model\ is positive whemA, <A, and negative
As will become clear below, the natural coupling for the for A > A . Note that anisotropy by itself is not enough to
KPZ term is not\, but the ratioh =\/c, which is corrected generate the KPZ term, but that a nonlinear and nonanalytic
as[31] disorder correlator is needed, and that this term will of

leading to

2

OC=Cy| 1+ d
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4—d
{F= 5 - (4.5

Ford=1 it yields {=0.6 versus=0.63 observed in simu-
lations[20], which is not bad an estimate for such a simple
argument. Again it is possible that if one increases the range
of A the estimat€4.5) becomes again exact, as is the case for
standard KPZ(directed polymey, see Appendix B. Note
however that it works with an upper critical dimensidn
=4, which is an open question, and is thus merely indicative.

V. FLOW EQUATIONS IN THE PRESENCE
OF A KPZ TERM

Let us start by deriving the FRG flow af ¢, » andA to
one loop starting from Eq2.3). The KPZ and disorder terms
are both marginal ind=4 and become relevant below.
Simple dimensional arguments show that these are the only
needed counterterms. We have computed the effective action
to lowest order. The corrections as given by the diagrams on
Fig. 2 are(for details see Appendix A

FIG. 2. 1-loop diagrams correcting (top), ¢ (middle), and »
andA(u) (bottom). 57
—=—[apc 3\A'(0")+c 2A"(0)]I,
course not be generated in a simple Larkin-type random K

force model, wheré\, andA,, are constants. sc

—=—[a;Ac 3A"(0T)+a,\%c *A(0)]I,
IV. DIMENSIONAL FLORY ESTIMATES ¢ 5.0
Before using analytical methods, let us indicate a simple 2N '

Flory, or dimensional, argument which indicates how expo- ~ ~ ~laskc A"(07)+a\ e *A(0)]I,
nents for ID and AD can differ. In the absence of a KPZ term
and settingu~x¢ the two static terms in the equation of SA=(ash2c A2+ c HA[A(0)—A]—(A)2DI,
motion scale as
wherel = [1/q* (integrated over the shell if using Wilson’s

Vfuwxgiz’ 4.1 scheme and the coefficients are
F(ug,x)~x (@702 (4.2 a=1, a,=2(d-2)/d, a,=4/d,
Using F(u,x)F(u’,x")~8&(u—u’)8%x—x’) for random as=a,=4/d, ag=2. (5.2

field disorder gives the Imry-Ma value
In the following we will setd=4 in these coefficients since
¢ _ﬂ 4.3 they are universal only to this order. This gives
F_ .
3 a0:a1:a2:a3:a4:1, a5:2. (53)
which can be argued to be exact for the statics and is cor-
rected byO(e?) terms at depinning. These types of argu-One then notes that the quantityc remains uncorrected to
ments typ|ca||y give the exact result for LR correlated disor-first order ind=4. In the next section we shall argue that this
der, as the LR disorder part is not renormalized. It happengemains true to all orders. The corrections to the linear term
that this range is long enough for the statics but not forin Eq. (2.3) can be interpreted as the correction to the critical
depinning; hence there is a correction at depinning whicHorce
increaseg. Note that it becomes again exact for depinning if
the range ofA in u or x is large enouglisee, e.g., the end of
Sec. IV B in[26] and Appendix B.

In presence of a KPZ term the latter scales as

6f=—6f.=[Nc 2A(0)+c A’ (0)]l;, (5.9

wherellzfq(llqz). It does not require an additional coun-
terterm if we tunef to be exactly at depinning=f..
(Vou)2~x22, (4.4) In view of the nonrenormalization of/c in Eq. (5.1) itis
useful to denote the unrescaled coupling constants as
Supposing that it is relevant, it dominates over the elastic
term. Balancing the KPZ term against disorder gives the
modified Flory estimate

7 A

C 1= A=?- (5.5

=

ol>
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One should also notice that if one performs the change oThis can be seen by noting that the acti@®) is invariant
variable in the initial model—u/X, 0—0X, then the free under x=e'x’, t=281€t',€ u=efu’, €0=0'e(2727§7‘1w)€
(quadratig part of the action(proportional toc and ») re-  provided 7= 7' 2 c=c'e?, A=\'eWFOl f

mains invariant while disorder and KPZ terms become  =f'e ¢*9¢ and A=A’el727200 a5 well as T
=T'el27d=2¢+0)¢ \While in presence of STS one has
A—1, =0, this is not the case here. In a Wilson formulation, the

critical force is obtained by integration over scales of

—)AZ \ ~ o~ ~
A(u)—N2A(u/N). (5.6) defo=— X Be(0)+ EL(0F)]AZ ¢, (5.15

Thus the coefficienh can be set to one upon appropriate 4 qantity which physically is likely to remain positive.

redefinitions of disorder and displacements. A salient feature of the AP class is that the critical force
It is natqral to s_tart the study of thg .FRG flow an_d thedepends on the angle by which the interface is tilted. From
search for fixed points as far=0 by defining the following the arguments df3,4] the characteristic slopeshould scale
rescaled parameters: like the ratio of the characteristic lengths orthogonal and par-
oy allel to the interface,0~ &, /&~ (f—f)"@9 and more
A=MALS, (5.7) generally the velocity should behave as

A(u)=AZ"A(uA; ), (5.8 . (5.16

0
v(f,0)=[f—fc(0)]ﬁg(w

within a Wilson scheme wherk,=Ae™ ¢ is the running UV
cutoff. This yields two coupled equations for the couplings Defining Aes by [4] v(f,0) =\6°+ -+, the smalld expan-

and & (u), sion of v (f, #) gives the effective\ . as
~ Ne~[F—F(0) P21 O=[f—f (0)] 272,
ae |I’])\=§, (5.9) eff [ c( )] [ c( )] (5.17)
aeﬁ(u)z(e—Zg)Z(u)+u§Z’(u)+2X23(u)2 Performing the redefinitiom=T+ 6x, we can compute the
s . ~ 5 critical force as a function of the angkto lowest order in
+[2X2A(0)+2XA’(0)]A(u)— A’ (u)? disorder
—A"(W[A)-A0)], (5.10

4 . ——
5t .(0)=— 927\[ 1- aI[AZA(O)+)\A’(O+)]
where here and below we absotb=S,/(27)* in the cou-

plings. One notes that if there is a fixed point fofu), then —— 1+ 5_)\ (5.18
{ is the roughness exponent since N ’
(Ugu_ ) =A(0)/c?q*= A 2R* (0)/q*~E*(0)/q?~ %, and thus we find an angular dependence, which is increased

(5.1  under renormalization.
The notable feature of the above FRG equation is the

when evaluated at scale,= (. A more rigorous calculation absence of corrections foto this order in Eqs(5.1). It is
uses the effective actiori9] at non-zero momentum, but to crucial to determine whether this persists beyond one loop. If
one loop gives the same result. The dynamical exponént there were corrections to higher order this might allow for a

t~x* and the anomalous dimension of the elasticity can b,gntrivial fixed point ofs and thus to fixZ. On the other

determined from hand, absence of corrections would imply that for0, X
flows to infinity, which makes the existence of a perturbative
fixed point doubtful. In the next section, we present a differ-

_ . (5.12 ent approach, which allows to clarify this question.
z—2=4,In(n/c)=—A"(0")+\*A(0). It is worth noting that, since KPZ terms are only gener-

ated above the Larkin length, the FRG flow below the Larkin

The correlation-length exponentin £~ (f—f:)"" and the  |ength(as well as the value of this lengtts identical to the

velocity exponeng in v~ (f —f.)# are given by the scaling casex=0. It is however instructive to artificially consider

relations the above FRG flow for an analytic function and with a given

imposed bare value of (settingZ=0). One gets

—¢=d,Inc=—X\A'(0")—N\ZA(0),

1
=—, 5.1 - » .
2={+y 613 3,A(0)=€A(0)+4N>A(0)2, (5.19

14

Z— ” _ " _ " N\ ”
B:V(Z_g)zz_gip- (5.14 9,A"(0)=€A"(0)—3A"(0)%+BR?A(0)A (0).(5'20)

016121-5
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The bare disorder had(0)>0 and A”(0)<0. Since all
terms on the right-hand sidehs) of Eq. (5.20 have the

same sign|A”(0)| diverges faster if #0, meaning that the
KPZ term cannot prevenk (u) from becoming nonanalytic.
Note that the first equation exhibits a runaway gf,y which

can shorten the Larkin length. th=4+ € atA =0 there is an
unstable fixed point aA”(0)= — €/3 separating a Gaussian Let us first illustrate how perturbation theory works in this

weak-disorder phase with the bare unrescaled Larkin forceew formulation and how one can easily recover the 1-loop
producing finite displacements, and a phase where disord&RG equation obtained in the previous section. Perturbation
seems to become nonanalytic, only to become irrelevant dheory is performed with the standard response-function. We

Iarger scales as can be seen by examining the flow in thﬁote a very important property: To Contraﬁbo with a
nonanalytic space beyond Ehe Larkin lengthMAt 0 there is disorder-insertioanthtXZA((In Z.—In th,)/;\)zxtlzxt, and

a fixed line atA (0)= — e/(4\?)>0 which separates a phase focusing onZ,, (not Z,,/), one can decide to either contract
whereA(0) grows from a phase where it decays to zero. On;  gianding outside thd or inside. In the first place, this

and that in this formalism the forc@r the distance to the
critical force corresponds to a mass:

mzzé(f—fc). (6.6)
C

the transition line the flow is towards a nonanalytic disorder.

VI. COLE-HOPF TRANSFORMED THEORY

eliminates the factoZ,,, but leavesA underived. In the

second case, deriving the argument/of gives A’/X, to-
gether with a factor of X, from the inner derivative. The

We now introduce the Cole-Hopf transformed theory|atter also cancels th&,, standing outside thd. So inde-

which has a lot of interesting properties.
Starting from Eq.(2.1) we first divide byc. This gives

- 1 f
%atuxt:‘?iuxt"—)\(axuxt)z"' EF(Xvuxt)+ E (6-1)

We then define the Cole-Hopf transformed fields

- In(Z)
Zy=eMxt & U= (AXI : (6.2
N

The equation of motion becomes after multiplying vfuﬂxt,

A In(Z
NOZyy= 2L+ — F( X, (A x)
C

N
th+ _th (63)
c
and the dynamical action

S= fxtzxt( D= 32) Zyt

A2 s A(INZy—InZ ) .
- _J’ ,thzxtA ~ th’zxt’
2 Jxtt N

N[ s
- = f f thzxt . (6.4)
C xt

pendently of where one derives, one always loses the factor

of Z,, outsideA. Contractingn times towards the vertex at

t thus gives a factor oZ%, ". This observation shows that
the diagrammatics are a very simple generalization of the
case without the KPZ term which was detailed up to two
loops in[19]. One easily verifies that the latter case is repro-

duced upon contracting only the argument\ofTo see this,
one performs the perturbation theory and finally takes the

limit of A— 0. Each time, one has contracted g outside of
A, one is missing a factor of 1/ and the term vanishes in
the limit of A—0. Further remark that fok—O0, the argu-
ment of A becomes

th_ th’

N

=Uy— Uy + O(N). (6.7)

This shows that the perturbation theory for isotropic depin-
ning is reproduced.

Thus the new diagrams, in the presence of the KPZ term,
can be deduced from those far=0 by allowing additional

contractions of &, outside theA. Compared to performing
calculations using Eq2.3) this yields a much simpler per-
turbation theory, with far less distinct diagrams. For ex-
ample, to two loops, the number of diagrams is reduced by at
least a factor of ten.

Note that now a renormalization of the te@AZ is al-
lowed, since it is no longer forbidden by STS. Indeed shift-

iNg Uy— Uy + ax/\ andZ— Ze~*, we find that the ac-

It is important to note that the above formal manipulationstion changes by

are only valid in the midpoin{Stratonovich discretization.
The strategy therefore is to start from the original equation of
motion, which is interpreted in the ltdiscretization, switch

to Stratonovich, make the change of variables, and then
switch back to Ito Note the identification:

58= f Zola?+aV)Zy,. (6.8
Xt

However, since the actiof®.4) is still translationally invari-
ant, it remains unchanged under

Oy= thzxt (6.5

ol >

Zy— puZyy,
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af Tb ‘% A SA(U)A=[—A"(u)A(u) +N2A(u)2]1,
SA(U)P=[—A"(u)2+R2A(u)2]1,

FIG. 3. 1-loop dynamical diagrams correctidg SA(W)°=[A"(w)A0)]I,
5 1. SA(U)9=2[NA(U)A’(0)+N2A(WA(0)]I. (6.1
th—’;th- 6.9 (U)"=2[NA(u)A"(07) (WAO)]I. (6.16

These reproduce the corrections obtained in the previous sec-

Transforming onlyZ,,— uZ,, without changingZ,, will al-  tion, but quite differently.
lows us later to fix the coefficient of the Laplacian to unity ~ 1he Cole-Hopf transformed theory suggests that

and transfer all its corrections into correctionstcand 7. Sh=0 6.17)
We now present the calculations at 1-loop order. We start '

with the corrections toy. Contracting one disorder vertex g g|| orders. To prove this one has to show that the following

once with itself, we obtain terms are not generated in the effective action
non ~(INZyy—=InZy) 1. [InZ,y—=InZy .1
NZyZ| A| ————— |+ A | ———— Zuz (V2,02 (6.18
A A A Xt
X Ry —t- (6.10 Itis easy to see that these terms result from a change of

(keepinguy,; and{,; fixed)
Expanding IrZ,, —In Z,, for small times yields

(t' =) Zy ) Zy—Zyl 1+ ﬁ|nzt (6.19
Inzxt/—lnzxt:Z—JrO(t—t’) . (6.1 X K e
Xt
One also has to expard; aroundxt’: . A Sh
Zy—Zy| 1= —InZy (6.20
Zy=— ('~ 1) Zy - (6.12 < A

Since the manifold only jumps ahead, the argumentd of and thus the Laplacian generates E§18. One can also
and A’ are always positive. Putting all terms together, weagain consider a term like, which is known to produce a

obtain shift in X [see Eq(3.9)], and does produce E¢(6.18 above
R together with other irrelevant terms with more gradients. In
Zypr Iy (' —1)Royr ¢ fact Eq.(6.18 is by power counting the only term marginal

CA A con cn, in d=4 which can appear. This term could in principle come

X{[NA"(07)+A"(07)]=[N"A(0)+AA"(0T) ]} from vertices with several derivatives acting Arat pointx.
(6.13 As previously discussed, it is always compensated, but the

compensating factor could be on a different vertex at posi-

Integrating overt’ —t yields tion x’ and hence produce E¢6.18 via a gradient expan-
. T S o - sion. We have shown in Fig. 4 the 2-loop diagrams correct-
Zyp I Zyp {INA'(0T) +A"(0T)]=[A“A(0) +NA"(0) ]} ing terms with a single response field in the effective action

(6.19 and thezZ and 17 fields which appear at each vertex. All
rms contribute td. Graphs b, ¢, and d each give a term of
e form(6.18 by expanding th&? on the lower disorder,
écl/c. Here they appear all together in one diagram. In thebUt th_e sum of them CancelS'A.S we will discuss below this is

. ~ graphically achieved by moving the ends of the arrows
absence of the KPZ term only the term independenh of 5.nd on the upper vertex, suggesting a more general can-
survives. Noting the cancellation between the two terms, Weg|ation. Another argument is that the divergence in space

finally arrive at between the upper and lower vertex is not strong enough in
order to contribute to Eq6.18 or fZAZ. For this to hap-

[A"(0T)—X2A(0)]1. (6.15  pen, one needs three response functions between upper and
K lower disorder, as is the case for diagrams e and f. They thus

We now turn to corrections to disordésee Fig. 3 Re-  both contribute tgf ZAZ, but since they have only a single
minding that the arrows can either enter into the argument ofn the lower disorder, they do not contribute to £8}18).
A or into the singleZ field, we get the following contribu- ~ We now argue that to all orders in perturbation theory no
tions (plus some odd terms, which we do not wyite diagram proportional to a singl& (one connected compo-

We have grouped terms such that in the first bracket ther%‘he
appear the corrections te 67/ and in the second those to

o7
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differ by a factor of —1, due to the derivative oA ((InZ

—InZ'€)/\) on either the first or the second argument. This
comes in both cases with a factor o¥Z1/at thesameposition
in space but at different positions in time. However, due to
the tree structure, the time integration can always be done
freely, and the two vertices finally cancel. This argument is
sufficient before reaching the Larkin length. However after
reaching the Larking length, the nonanalyticity of the disor-
der may yield additional sign functions in time between both
ends of the vertex, as has been observefiLl8]. Then the
proof gets more involved. There is another very powerful
constraint on the generation of terms like E818: One has
to construct a diagram with a strong spatial ultraviolet diver-

FIG. 4. 2-loop dynamical diagrams correcting the sirigleom-  gence, such that after Taylor-expandiagn space the addi-
ponent. Diagramga)—(g) correct the friction. Only diagramée) tional factor ofx? together with this strong ultraviolet diver-
and (f) have a sufficiently strong divergence in spdaéter time  gence gives a pole in &/i.e., a logarithmic divergence at
integration that they can produce spatial gradients. In fact theyd=4. This is the situation for diagrams e and f in Fig. 4. It
both correcZAZ. (The diagram is the well-known sunset diagram arises if and only if there arer2+1 response functions con-
from ¢* theory) nectingn points in spacdthis may well be a subdiagram

but where response functions that connect the same point in

neny can be generated, which contains a factor ofSPace are not counted. In all examples which we considered

(VZ)%(1/Z). We believe these arguments to be conclusivelP to 4-Ioop_ order, which had sufficiently many factors of
especially we have not been able to construct any countef/Z, and which had the correct UV structure, then(21)
example at 3- or 4-loop order. However the structure of thd€Sponse functions where enough to enforce an ordering of

theory is sufficiently complicated that some caution is ad-fimes, such that the mounting proof sketched on Fig. 5 went
vised. through. We have to leave it as a challenge to the reader to

arbitrary diagram correcting a single-time vertex have a tre¢!gorous. ) _
structure(left). This diagram can be completed by adding the L&t us now return to the analysis of the RG equations. We
disorder-interactions between arbitrary pairs of pointsintroduce rescaled variables according to

(middle). A potentially dangerous factor of Z/appears at

point 2. Point 2 has a “brother” 3, to which it is connected A(u):A?%Z(uAg), (6.2

by a disorder correlatok (dashed ling

Then, two cases have to be distinguished: Either there is
no line entering point 3, then point 3 can contribute his factor
of Z to point 2: Since it is at the same point in space, the i
difference can be expanded in a series in time, giving timeyith A ,=Ae ‘. Because we have defingd=e", in order
derivatives ofZ which do not spoil the argument. not to generate additional terms, a rescalingiafemands a

On the other hand, there may be a line entering point 3(com ; ; . :

g . i i pensatingrescaling ofA such that the product remains
This is drawn on Fig. E(mlddle)_. By construct_lon(at least unchanged. Even though this may not be the best choice
two brfauche:%of response functlr?nsgnter: at pﬁém 2. A.t least corresponding to the existence of a fixed point, it is the only
one of them does not contain the brother gh2re point 3. way to preserve the Cole-Hopf transformation, leavznand

Here it is the left branch, containing point 1. Now considerI 7 h 4. Th ling Af ; h i
the diagram where the response function from 1 to 2 is re" £ Unchanged. The rescaling afcomes from the rescaling

placed by a response function from 1 targjht). Since one  ©of A, which appears as a factor af in front of A'in the
can always contract last the response field at point 1, leadingction and as a factor of X/in the argument ofA.

to either the response function from 1 to 2 or the one from 1 This leads again to the FRG flow equation given in Eq.
to 3, these diagrams have the same combinatorial factor, b5.10):

A=NA; S, (6.22

FIG. 5. Figure explaining the nonrenormalizationi\ofsee main text.
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FIG. 6. Fixed point structure for different values »f The coordinate system is such tlagrows to the right and to the top. Both
separatrices are=—1/2a¢e* (dark andb=—a/(1+e~*) (bright).

aA(U) = (e—20)A(u)+ tul! (u)— A" (W) [A(U) - X(0)] can be seen b~y analyzing the flow equatié23 with the
trivial solution A(u)=A,
— A’ (u)2+2X\A(u)A’(0)

. - 9,A=€eA+4N2A?. (7.2

+ 2N [A(u)?+A(u)A0)]. (6.23
This corresponds to the localization—or self-attracting

Further remarkable properties of the Cole-Hopf transforme@hain_prouem studied ifi27] and we expect on physical

theory will be shown below. We now turn to the study of the grounds the full functional form of\(u) to be important,

FRG flow. which may lead to other fixed points.

For A=0 we already know that there is an unstable fixed
VII. PERIODIC CASE point

We now consider the case, whekéu) is a periodic func- Ag(u)=A*(u)+ce, (7.2
tion with period 1. The starting point is E@6.23 with ¢ '

=0, thusk= \ remains constant under renormalizat{cmall . 1 1

orders. Since the period is fixedy cannot be scaled away AT(u)= 36 éu(lfu)' 73
using Eq.(5.6). It is thus a continuously varying parameter

and we must study the flow as a function of it. which describes isotropic depinning for CDW. This fixed

In Eq. (6.23 there is a tendency for a runaway flow, as point survives for smalk as can be seen from a series ex-
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pansion in powers of. Moreover at each order in, A* (u) 1

remains polynomial iru(1—u). We do not reproduce this fC~—[A"(07)+NA(0)]=~- X(a+2be‘“)>0.
expansion here, since we have succeeded in obtaining the (7.13
fixed pointanalytically. Equation(6.23 possesses the fol-

lowing remarkable propertyA three parameter subspace of Fora<0 this is possible only if

exponential functions forms an exactly invariant subspace

Even more strikingly, this is true tall ordersin perturbation . a “b<— Eex (7.14
theory. This property, which is quite nontrivial, is understood 1+e 277 '
in the Cole Hopf theory, as discussed below.

For our purposes, it is more convenient to write On the other hand, fa>0 the flow forais alwaysa— < in

a finite time. Indeed the rhs of E¢7.10 is always positive

1 . for a>0. Forb>0 this is trivial; forb<<0 this can be seen
A(u)= A—fo(UK), (7.4 from
N
o _ _ a+4a’+4abe *+4b%
such thatf satisfies the same FRG equati@23 with \
=e=1, but with period\. This allows us to make an ansatz =a+4(a+b)’e*—4abe *+4a*(1-e *)>0.
for a family of exponential functions (7.15
f(uy=a+be "+ce". (7.9 The flow given in Egs(7.10 and(7.11) is shown in Fig.

6. There are four fixed points fa=4— €. In the original
variables they are as follows.
(i) Gaussian fixed point Grepulsive in all directions

The FRG flow(6.23 closes in this subspace, leading to the
simpler 3-dimensional flow:

d,a=a+4a’+4ac+4bc, (7.6 with A(u)=0. . _

(i) Self-avoiding polymer fixed point SAP, where the cor-
d¢b=b(1l+6a+b+5c), (7.7  relator is a negative constant:
d¢c=c(1+6a+b+5c). (7.9 A(u)=—i 4.16

4N
This works only for amplitude one in the exponential; other- _ o . _ _
wise higher modes are generated. Also note that these equié-is the problem of localization in an imaginary random
tions are not symmetric under the exchangebaindc, as  potential, i.e., the Edwards version of the better known self-
one might expect from the interpretation we will presentavoiding polymer. Itis attractive in all directions, even those

later. not drawn here. Writind (u) = — 1/4+ ¢(u) and linearizing
Requiring periodicity, or equivalentlf(u)=f(A—u) im-  EQ.(6.23 gives
poses 1
c=be? 7.9 20$(0)=—$(0)~ 5 ¢'(0"), (7.17)
and one checks théi/c is indeed unrenormalized. Thus one 1
can study the simpler two-dimensional flow ded' (U)=— > @' (u). (7.19
dea=a+4a’+4abe M+4b%e (7.10

This self-avoiding polymer fixed point will not play a role in
the following since for the disordered problef(0)>0.

— -\
d(b=b(1+6a+b+5be™) (7.17 However it is interesting in other contexts, as discussed be-
as a function of\.. A physical requirement is that low. . _ . .
(iii ) Fixed point U, with one attractive and one repulsive
A(O)=a+b(1+e *)>0, (7.12  direction.
|
1| 1+54e M5 *—(1+5e M)J1+e M(34+e* 2
A(U)=7| — ( — 7}\)\/ ( )+ (e Mg M1~y |
A 8[1-5e (e "-8)] 1-7e *—3\J1+e N34+e M)
(7.19
The value at zero
3+eM3+\1+e M +34e7 )
(7.20

AO)=- N[7+eM3\1te 2+3de *—1)]
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is always negative fox=0, thus the FP is unphysical for our problemdr 4— €. The combination yielding the corrections

to the critical force
—1+eN7+V1+e 2 +34e7 M)
f =
© oN[7+e'(3V1te 2134 —1)]

(7.21

is always positive fon=0.
(iv) The random periodic fixed point RP has

A) 1 1+54e“+5e‘2)‘+(1+5e“)\/1+e‘”(34+e"‘)+ 2 (M1 g-M1-0)

u)= - = = e e ,
A2 8[1-5e (e *-8)] 1-7e  +3\1+e N34+e V)
(7.22
3—eM—3+V1+e P +34e™M)
A(0)= : (7.23
N[ —7+eMN1+3V1+e 2 +34e )]
—7+eM1+V1+e 2 +34™ M)

fo~—[A"(0")+NA(0)]= (7.29

IN[—7+eM1+3\1+e 2 +34e )]

Both quantitiesA(0) and f. are positive for all\=0, thus
this fixed point is physical.

The fixed point RP is the continuation of the fixed point
(7.3 at A\=0: Note that apart from a constant only the term
u(1—u) survives from the exponential functions. Like the
fixed point atA =0, it is attractive in one directioftowards
the fixed point SAPand repulsive in anothgtowards large
A(u)]. Itis thus a critical fixed point. One can argue that any
perturbation which leads to SAP is unphysical, since at some (7.27)
scale A(0) becomes negative. Since we did not find any
strong reason why the system would be exactly on this critiFor small\ at least this appears to be negative an®(k?).
cal surface, it is more likely that this FP represents a criticaFrom the flow equation foA’(u),
regime which lies on the boundary of the physical domain. It ~ _ ~ - -
is however interesting that its analytic form can be obtained. 7¢A"(U)=—A"(W[A(u)—A(0)]

In particular one can compute correlation functions exactly LR (W)t 28K (0%) + 2R2K(0) + 4R7A(U)

at RP.
—3A"(u)] (7.28

An important question is whether there are fixed points
give a few general properties. First the flow equations angne sees that the behavior at larga must be exponential.

shows that starting fronfA=0, a positive value fofA is
generated in the early stage of the RG. If there is a fixed

point value for[A it must be equal to

~ l ~
2>\2f duld* (u)?
0

1 ~
f dud*(u)=— — — .
0 e+2MA*'(01) + 2N%A* (0)

outside of the exponential subspace considered above. Let us
fixed point conditions nean=0,

9,A(0)= €A(0) +4N*A(0)2—A'(07)2+2NA(0)A’(0F),

3,A"(07)=A"(0")[ e+ 2\A’(0F) +6AZA(0)—3A"(07)]
(7.25

and the flow equation fofA,
1 - —— e 1 -
aef duA(u)z[e+2>\A'(o+)+2>\2A(0)]f duk(u)
0 0

+2X2fldu5(u)2 (7.26)
0

It seems that there are no nonexponential fixed points.
The runaway flow will be discussed in the next section.

VIIl. RANDOM FIELD DISORDER

Let us now consider nonperiodic functions. The main
problem with the natural rescaling af=u’e‘ as in Eq.
(6.22 is that\ grows exponentially, and no fixed point can
be found. Let us therefore study Eq%.6)—(7.8) setting the
rescaling factor=0. Again we consider the invariant sub-
space of exponential functions, parametrized by

A(u)= Aief(uf\), (8.1
)\2

f=a+be ! (8.2
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for u>0. Note that we have put the coefficiet=0, since  which has the correct sign. It has a vanishing critical force,
we are not interested in solutions growing exponentially.in  but is a good candidate for the critical behavior between the
The flow is Gaussian phase and the strong coupling KPZ phase.
) Let us now study the runaway flow fdr=4— €. Suppose
da=at4a’, (8.3 that A,(u) is the solution of the (4 €)-dimensional flow

equation ate=1. Then
db=Db(1l+6a+hb). (8.9
Ag(u)=g,Ay(u) (8.13

8.5 leads to the flow equation for the amplitude,

The physical requirements now read
A(0)~a+b>0,
_ 2
f.~—a>0. (8.6) d9,= €9+ Q. (8.14

For the RF case one has one such point at the boundary of

So it is natural to look in the regime , . )
g the physical domain, as can be seen from the flow equations

b>—-a=0. (8.7 4= 0 8.15
There is again the fixed point
db=b+Db?. (8.16
fx)=— Z+ §e_x (8.8 Also note that since this mode explodes after a finite renor-

malization time, it is difficult to avoid. However, we have not
which is the infiniteX limit of the fixed point RP of the Yet completely ruled out another scenario, where at least
previous section. SincEx) does not go to zero at infinity as SOMe  trajectories have exponential growth. Making the
is expected for random field disorder, and since it is unstabl@Nsatz
along the linea=—1/4 it is unlikely to have any physical

_ 271
relevance for the anisotropic depinning class. The other fixed Ai(u)= e[ (u)+g(w], (8.17

point is this requires to find a solution to thé function ate=0,
f(x)=—e ¥ (8.9 which we write symbolically
which has the wrong sign. One clearly has runaway flows B(f,7)=0. (8.18

within the exponential subspace.

We have examined the flow of the FRG numerically. For
all initial conditions considered, which were not exactly at
one of the fixed points mentioned above, we found the solu
tion to explode at some finite scale, a phenomenon which i
known as thd_andau pole One issue is to identify the cor-
responding direction in functional space. This issue is relate
to fixed points ind=4+ e dimensions which we now briefly

address. The diagram for+e is obtained by changing gether withg. It is unclear how this carries to higher orders,
——A and d,——d,. This means to replace——a and since it seems to require thtu) is also a solution of th@

b——b on Fig. 6 as well as inverting the direction of all function ats=01. This is however .exactly what happens in
arrows. U then controls the boundary between the strong!® casé =0 with the constant shifA(0). Although numer-
coupling regime of KPZ and the Gaussian fixed point G;/CS does not seem to confirm it, it is hard to disprove. A
SAP between localizatiofattractive polymers the Gaussian duestion which remains to be answered is what the basin of
fixed point is multicritical and RP between branched p0|y_attract|on of runaway growth and eventually of exponential

mers and Gaussian. For the random field case we now ha@owth are.

One can check that near zero such a solution is in principle
possible. There is a solution, which vanishes uat u*
=1.39895(for A=1) and becomes negative beyond. One
an argue that one needs it only upute uy<u*, since the
inear term can no longer be neglected whigfu) ap-
groaches zero. Noting=(1+ J5)/4 one hag’(0)=— 1/,
f7(0)=(1+2r?)/(3r?). In this scenaria is determined to-

1 R IX. GENERAL ARGUMENTS FROM THE COLE-HOPF
A(u)= =2 ef(un). (8.10 REPRESENTATION AND BRANCHING PROCESSES
In the Cole-Hopf representation, it is easy to see why the
The fixed point RP gives exponential manifold is preserved to all orders. Let us insert
1 1 . 1
fx)=7-3¢ (8.11 A= (a+be M+ ce) 9.0
A

in Eq.(6.4). The complicated functional disorder takes a very
f(x)=e™%, (8.12  simple polynomial form
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time : :
: : : :
a b c

FIG. 7. The three vertices proportional @ b and c in
fx,t<t’thth’ (alele’ + bZ>2<t+ Czit’)'

S= j tzxt( 7 — f9>2<)zxt
X

_ f Ltrzxtzxt,(azxtzxt,+bz§t+cz§t,). (9.2
X

Note that we have ordered the vertices in time to distinguis
betweenb and c taking correctly into account that the full
correlator for the present nonanalytic, e.g., random field
problem is Eq(9.1) with u replaced byu| [if Eq. (9.1) held

as an analytic function there would be no distinction betweer?W

b andc, “thus no arrow of time”.

The vertices presented on Fig. 7 can be interpreted asy,
branching processes, and we shall thus call this foramch-
ing representationLet us show how one reproduces the flow
equations(7.6)—(7.8). In the time-ordered representation,
diagrams a to d of Fig. 3 have the form given on Fig. 8. To

simplify notations, we set=1. Then

A(u)=a+be Y+ce", (9.3
A’(u)=—be U+ce", (9.4)
A"(u)=be U+ce", (9.5
A(0)=a+b+c, (9.6
A’(0")=c—b, 9.7
A"(0")=b+c. 9.9

The diagrams have the following contributions:

sda=aal,
ob=abl, (9.9
éc=acl,

SA3(U)—

da=(aa+4bc)l,
ob=2bal,
6c=2acl,

SAP(u)— (9.10

time

PHYSICAL REVIEW E 67, 016121 (2003

6a=0,
I
= +b+c)= (from ,
SAC(U)— Sb=2b(a+b c)2 ( c)
I
5c=20(a+b+c)§ (from ¢),
(9.11)
sa=2a(a+2b)l (from d; and @),
SA(u)—{ ob=2b(a+b+c)l (from d,),
oc=2c(a+b+oc)l (from d,).
(9.12

Note that the factors of 2 come in general from contracting
Z2.. The nontrivial factor of 1/2 is due to the fact that the two

Ihr‘ightmost points in ¢and ¢ are time ordered. To relate the

integral tol, one can first symmetrizgielding the factor of
1/2) and then freely integrate over time. Also note that only
the last diagram, d+d,, contributes to the asymmetry be-
eenb andc.

In the same way, one can reproduce the correctiong to
e only vertex in Eq.9.2 which contributes at leading
order is the one proportional ta: b does not allow for a

contraction and will have bothZ andZ at the same point,
thus only correcting the critical force.leads to

thzxt' Rx,tft’ (9-13)

and after a gradient-expansion following the procedure de-
scribed after Eq(6.10 we have

thzxt(t, _t)Rx,t’—t' (9-14)
Integration ovett’ leads to the correction tg,
57
Tl (9.19
Y

which is the same one obtained from E.15 using Egs.
(9.6) and(9.8).

Let us now exploit this representation further: It is imme-
diately clear that one cannot generate®*! which corre-
sponds to

z3,
77—
J'th<t’ Xt th

or any other such fractions. This shows that the space of
functions spanned by E¢Q.1) is indeed closed tall orders

(9.16

FIG. 8. Diagrams correcting the disorder in the branching representation.
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FIG. 9. The three phases of the flow diagrams on Fig. 6.

in perturbation theoryAlso there is no renormalization o

whereas a correction to the elasticfty 42 is allowed, and
indeed shows up at 2-loop order.

Finally, note that the domain of variation afin the pe-
riodic case yields an action with multiplicative periodicity in
Z, but this does not seem to be important here.

PHYSICAL REVIEW E67, 016121 (2003

time

FIG. 11. Self-avoidance plus branching.

spontaneous decay. This process is depicted on Fidp.ddn
either come with a positive sign, or with a negative sign. If
the sign is positive, this can be interpreted as the two par-
ticles attracting to make the branching process. It is clear that
after some critical threshold, the process and the phase SAP
becomes unstable, since the induced attraction between par-
ticles tends to make them collapse at the same point in space
and then annihilate. This leads to the runaway flow in phase
B-1 on Fig. 9. On the other hand, for negathlyeeven a large

|b| does not lead to a collapse. This is why on Fig. 6 in the
case ofA=o the SAP phase witta<O extends tob—

Let us now discuss the relation of our findings with self- ~%- This remains valid for finite\ if in the full flow equa-
avoiding polymers, branching processes and directed percdons (7.6) to (7.8 c=0 is set from the beginning. However
lation. the situation for finitex discussed in Eqq7.10 and(7.11)

First, on Fig. 10 we have drawn a diagram correspondingn@pPs in the language of branching process?f to a.finite initial
to the perturbation expansion of fixpoint SAP, which is thefatio betweera andb, parametrized bg=be"*, which re-
only fully attractive fixed point in the phase diagram, Fig. 9. Mains uncorrected under renormalization. The second
One easily checks that by integrating over times, one recoy@ranching process being present, it can render the phase
ers a standare*-perturbation theory, as depicted on Fig. 10. SAP unstable to B-2. The vertexis interpreted as
By first integrating over the momenta, one recovers the per- ALC
turbation expansion of self-avoiding polymers. It is well '
known that this fixed point is stable. In terms of particles, it
can be interpreted as the world lines of diffusing particles,
which are not allowed to visit twice the same point in space
Let us now add some terntsandc. In interesting limit is
A=, since therec can be set to zero. Adding a term pro-
portional tob, the diffusing particle is allowed to branch.
More precisely, two particles can meet at a tim&hen one
of the particles becomes inactive, before reappearing at so
later timet’>t. One can interprete this as

(9.19
(9.20

This means that a particle A becomes spontaneously inactive

at some timet. It remains at positiorx until at some time

t’>t another particle A comes by to free it. The reduced flow

equations for the combined situation are given in E@sl0

mand (7.12), and lead to the instability of the phase SAP in-
Yuced by the branching process

A+C—A.

A+A—A+B, (9.17 X. LONG-RANGE ELASTICITY

(9.18

Particle B is completely inert, and does not diffuse awayEq'
from its position of creation, before it decays into A again. (10.1)
However note that any point in the future is equally likely to '

see B change back to A. This is very different from, €.9., &rhere are now two elastic constants, the LR epand the

short range(SR) one c,, and we thus define the two-
dimensional regularization parameters,

Let us now study anisotropic depinning in the case of a
manifold with long rangéLR) elasticity, the elastic force in
(2.1) being, in Fourier,

B—A.

2 2
CO°Uqg,— (C,lal*+ca?)ug, -

e=2a—d, (10.2
(10.3

The case of most interest corresponds to the parameters for
the contact line depinningl=1, a=1, i.e.,e=k=1.

2—a.

FIG. 10. A self-avoiding polymer.
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FIG. 12. Phase diagram in the:(d) plane. The solid line i%
=0. The dashed line corresponding to E§0.1]) separates the
domain where an infinitesimal KPZ term is relevant from those
where it is irrelevant. At ordee? this line will bend to the left, but
should not cross the point=1 anda=1.
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R K
K= —,
€

& (10.8

Of course the SR part of the elasticity is corrected:

Cz
C

a

—k—NA'(01)=N?ZA(0) (10.9

(9( |n<

and we will focus on situations where it is irrelevdatcon-
dition which must be checkeal posteriorj.

Note that since the LR elasticity is uncorrected, the di-
mensionless variables, contrary to E§.5), are not divided
by ¢, but by c,=1 and their RG equations thus do not
contain additional contributions from the correctionscto

As a result\ has now nontrivial corrections and the Cole-
Hopf mapping no longer works, or has to be defined with a
flowing X.

Before embarking on a more detailed analysis let us indi-

Power counting shows that disorder is perturbatively rel-cate the main behavior we expect from E@$0.6 and

evant below the critical dimensioti<d.=2a«. Disorder is

(10.7). For A=0 one has the usual anisotropic depinning

thus relevant for the contact line case but the crucial questiofixed point studied in Ref[19]. One can perform a linear

we investigate here is whether the KPZ terms are importa
there. Study of the contact line depinning is usually pe
formed within ad=2a— € expansionsee Ref[19]) at fixed
a. This is the solid line in Fig. 12. However as soon as
elasticity is long range£>0) simple power counting shows
that the KPZ terms are perturbatively irrelevant tbnear
d.. Working at fixede as, e.g.,.«=1 is thus not the best
method. One alternative is to study the vicinity of the point
d=4, =2 and perform alouble expansioboth fore and«
small. The idea is to determine a ligp,(«) in the («,d)

rr_‘§tability analysis of this FP for small. From Eq.(10.6 one

finds that linear stability holds provided

€
K>§iso=§+0(62) (10.10

for the nonperiodic problem, angs,=0 for the periodic

case. This is the dashed line

dez(a):SGf_6 (101])

plane below which the KPZ terms are important and must be

included. One can determine this line near the pdint4,
a=2 and, by extrapolation, find on which side of the line
lies the interesting case= k=1 (see Fig. 12

Through the replacememf?—q® in the propagators of

represented in Fig. 12. Fal>dkp(«a) the isotropic FP is
stable. This is the case for the contact line depinning. On the
other hand, one expects from E¢50.6 and(10.7) that even

then, if the value of\ is large enough, the RG may flow

the 1-loop diagrams of Sec. V, it is easy to derive the 1-loopagain to KPZ strong coupling. This is the same runaway flow

FRG equations for a general, in the presence of a KPZ
term as in Eq.(2.1). First one obtains as usual thej is
uncorrected to all orders, and thus we sgt1 in the fol-
lowing. Defining the dimensionless couplings

N=AALTE, (10.4

A(u)=A%"“A(uA;9) (10.5

within a Wilson scheme wherk,=Ae™ ¢ is the running UV
cutoff, we find the flow equations:

3¢ InN=¢—k—N*A(0)—NA’(0™) (10.6

9,A(U)=(e—20)A(u)+uZA’ (u)+2N?A(u)?— A’ (u)?
—A"(u)[Au)~A(0)]. (10.7)
We work to lowest order in botle and « (and thus neglect

the small changes in the coefficients of ordgrand define
the ratios

as for SR elasticity. Both fixed points should be separated by
an instable fixed point, of which we will show that it is
attainable perturbatively. Thus fa>dyp,(a) we expect,

and find belowtwo phasesone wherex flows to zero(de-
noted the ID phageand one where the KPZ terms are im-
portant(the AD phasg The question is thus to determine the
basin of attraction of each phase and the critical, repul-
sive) fixed point which separates the two phases. Quite gen-
erally one expects a critical vali& below whichX flows to
zero and above which it runs away.

A simple argument, confirmed by the more detailed analy-
sis presented below, allows to estimatefor small values of
€ i.e., nead~dyp,(@). SinceA(u) changes by ordex? for
smallX, the Eq.(10.6 gives the critical value

% _ kK~ Liso

Ne=—
&(0%)]

(10.12

for small k — ({iso/ €), whereA’ (07)=0(e) takes its(nega-
tive) value for the isotropic depinning fixed point.
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0.25 ~1
/ -1.5
0.5 1 1.5 2
-2

FIG. 13. ;= (/€ as a function of\ for LR elasticity. Note that

=N =100, FIG. 14. The functionf(x) (light) and ¢;(x) (dark defined in

the text. One can read off; as a function ofk as follows: The

Although analysis of the full FRG flow requires numerics curvey=f(x) yields ;. (x axis) from & (y axis) and, in tumn, one

one can obtain some analytical information on the transitiof®2ds¢1(k) (v axis) from A; (x axis) using the curve/=¢,(x). This
between the isotropic phase and the anisotropic strong-kp2S indicated by the arrows. The result is plotted in Fig. 15.
coupling phase.

The curves f(X), f (k) and the resulting,(&)

A. Nonperiodic systems =§(X§)=§(f‘1(;‘<)) are plotted in Figs. 14 and 15, respec-

Let us start with nonperiodic systems and search for &Vely- 5
perturbative fixed point of the systefh0.6), (10.7). Interest- One sees that there is a solution with a posiNgeonly if
ingly in that case, there is one, whose properties depend cori=> k.= 1/3 consistent with the linear stability analysis given
tinuously onk= «/e. above. The roughness exponent associated to this FP then
For each value ok we can determine the FP through the increases continuously, as shown on Fig. 15, féigm 1/3 to
following construction. Given the reparametrization invari- larger values a% increases beyond#, . In particular, since
ance(5.6) of Eq. (10.7), we can always set we are interested in the poirt=1, e=1 of the («,d) plane

(see Fig. 12it is worthwhile to give the extrapolation
A(0)=e, (10.13

and for each fixed value of search numerically for a fixed {(k=1)=0.7, (10.18
point function of Eq(10.7) which decreases at infinighort
range p_inning forpe correlations c_)f_the random_ field 1)ype andX;,1=1.037, values which give the simplest extrapola-
Interestlng'ly we find, through expl|(?|t humerical mtegrgnon, tion for the contact-line depinning. One should however not
that there is always one such solution, denoted\Byu), if  expect too high a precision from this crude estimate.
one tunes/ to a value notedg(X). The resulting curve Thus we have found a nontrivial FP for this problem. It
£:(N)=¢(N)/e is plotted in Fig. 13. It starts at(A=0) contin_uously depend.s Qn/e and _exists_only for;_«/e> 1/3.
— 1/3 (the isotropic valupand increases & increases Thg simplest scenario is tha.t_th|s FP is associated with the

Considering the fixed point equation of E40.7 a{t u cr|t|c§1I pehawor a}t the t'ransm'on .between the phase where
—0 using Eq.(10.13 shows that the value oi'(d+) s a KPZ is |rrelevgnt(|sotrop|c o_Iep_lnmngand f[he phase where
simple expres.,sior}' KPZ grows(anisotropic depinning To confirm it and check

' that this FP has only one unstable direction one needs a more

- \/—~~2 detailed numerical analysis. Note that this is also indicated
AT (07)=—eV1=24 (M) + 20" (10.14 by an adiabatic approximation considering E40.6) alone

Thus, reporting this value, as well &{0)=¢€ in Eq. (10.9

we see that for each value gfwe can determine the value of 1.2
X by solving the equation L

k=f(N)=L,(N) = N2+ XV1-24,(N) +2\2 0.8

(10.15 0.6

Denoting\X this solution, we obtain the FP functiafnf,f(u) \0\4-
and the value of the roughness exponénfk) :=§1(X§). 0.2
Comparing Eqs(10.6 and(10.9 we note that the SR elastic 1 -o0s 0.5 1 1S 5
part is indeed irrelevant as soon &s 0, and thus the above
analysis is consistent. FIG. 15. £,(k), usingZ(X) andx=f"1(k).
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and assuming that the disorder does not vary, which yieldghich reproduces Eq10.12, X~ 6k, to lowest order irk.
that the FP is repulsive if’(x)>0 and attractive iff’(x) One finds thaf\; increases monotonically witk and di-

<O0. ~ .
vergesi,— + as k—1/2. This suggests that fot=1/2

only the ID phase exists.
B. Periodic systems

In the periodic case, sinde=0 is requested at any FP, we
see that we cannot enforce the SR-elasticity coeffiaigrid
implies that Eq(10.9 vanishes. However if we start with @ majization group approach to anisotropic depinning. This
small ratio ofc,/c, or if the flow is such that this ratio gets \yas mandatory since nonanalytic renormalized disorder cor-
small before we reach the fixed point, then it is legitimate torejators were found to be crucial already for isotropic depin-
negleCt the ef‘feCt (]ﬁz. We restrict Our_ana|ySIS to that case, ning and were neg'ected in previous approaches Of AD.
and study Eqgs(10.6 and(10.7) searching for a FP. Amore  |pdeed we have shown that the nonanalyticity of disorder

Xl. CONCLUSION

It can easily be seen that the form

€

A(U)= — (a+be "+ ce') (10.17

}\2

is not exactly preserved by the flow anymdeeg., d,A(u)
yields a term proportional taue™“*3,\, through which

variations ofx, flow]. One can still however search for ex-

ponential fixed points since then does not flow. Equation
(10.7) yields the conditions

a+2a’+4bc=0, (10.18
b+4ab+b?+bc=0, (10.19
c+4ac+c?+bc=0 (10.20

and we can sec=be‘; to ensure periodicityA (u)=A(1
—u). We obtain the following fixed points:

*e
b= ———, (10.21
V1+34e+e*
1 1+¢
a=—-F———— (10.22

4 a\1+3480+ €2

as well as two othersa=—1/2p=0) and @=0,b=0).
The corresponding FP condition fargives

0=—k—a—2be ™ (10.23

The FP with a positivéh is the one of interest. It is again
presumably the boundary between the zero and strong KP

phases. The value of; is given by the positive root of

er-7

V1+346h+e?

4i=1+ (10.24

KPZ term, a first explicit field theoretic demonstration of
how these terms appear at depinning. The resulting anoma-
lous terms in theB function modify the flow compared to
previous approaches in interesting ways. We found several
nontrivial fixed points and for SR elasticity a Cole Hopf
transformed theory which allows us to simplify considerably
perturbation theory and indicates that the KPZ couphig

is uncorrected to all orders.

For LR elasticity we have found the domains of param-
eters belonging to ID and AD, respectively. We found that
for the experimentally interesting case of contact-line depin-
ning, two phases exist, ID and AD, and that the KPZ cou-
pling (i.e., the anisotropyshould be large enough for the AD
class to apply(otherwise the ID exponents is expected
[18,26)). At the transition a larger value df~0.7¢ (with €
=1 for the contact lingis obtained. This scenario could be
checked in a numerical simulation. To make the comparison
with experiments more accurate one should consider the
more involved structure for the KPZ terms unveiled 5]
but this can be done by methods similar to the one intro-
duced here.

For SR elasticity we have found interesting new fixed
points. A bit disappointingly, they possess one unstable di-
rection and thus correspond to transient or critical behavior,
and not to the asymptotic behavior which instead is con-
trolled by a runaway flow to a regime not perturbatively
accessible by the present method. On the other hand, an en-
couraging result is that we found a class of disorder correla-
tors (in the form of exponentiajswhich should be invariant
to all orders. These correspond to a set of branching pro-
cesses which look tantalizingly close to the ones introduced
to describe reaction diffusion and directed percolation. More
work is necessary to understand this simpler equivalent class
of theories at strong coupling, as they may contain the key to
this conjectured connection between anisotropic depinning
and directed percolatiofin d=1+1) and its generalizations
in terms of blocking surface@n higherd) and ultimately an
?nderstanding of the upper critical dimension for this prob-
em.

A posteriorj it is not surprising that the present approach
yields again a flow to strong coupling KPZ, as it does in the
thermal version of the problefi23,24. It is possible that as
in the thermal problem another representation, as e.g. the
directed polymer, better exposes the physics and in particular
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what is missed in the present approach. The corresponding
formulation would be —9 / / et M)t (P D)y _ |2
o<t<t! Jk

x A'(0%)di

k2

2000= [ plyco) -
y(t)=x =2AA’(O+)ﬁﬁALe_t (K%+m )m

t 1 /dv\? 1 ¢/ (k2 m? /
Xex;{— dTﬁ(d_Z ++V(7),7)], X(et(k+ )—1—(k2+m2)t)
t/
(11 = 22N (0%) i
x/ k? k2 + k?
2 233 (k2 2)3 2 2)3
i.e., a directed polymer in a random potential but with the k 2(k% 4 m?) g(k +m?) (k)
choiceT=1/7 and the additional self-consistency condition: = \A'(0%)du Ermip
k
k2
= A (0Niw | —m——— A3
N ) AA'(0 )uu/k(k2+m2)3 (A3)
V(y,T):TZF(YaTmZ(y,T)), (11.2 j
Cn A
-4

K? .

| | o = SN0 / T U
which relates the random potential to the pinning force and
to the free energy of the directed polymer and makes the (A4)
problem analytically far more complex. It may possess simi-
lar physics and thus be amenable to some extended FRG
approach which would better accouas it does for the ther-
mal problem for the coarse grained correlations in tiie
direction a property clearly not taken into account by the

B . (ka +pa)pa
=2A'(0 )/\/k ((k + p)? + m2)}(k? + m?2)

2 2
present method, which treats correctly only correlations in ng'(m))\/ - p 5 — 22(]“1’)2 .
the InZ space. 22— ) k (k2 +m2)? (k2 +m?)
— - Ul\a -
== A'(0 )/\/,c & +m2)2uAu
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APPENDIX A: DIAGRAMS it k L(K2+m2) ave)
We use the following model setting= =1 to simplify
notations: (A6)
szf 70U~ CcUAU—ND(Vu)? (A1) — —4A(0)2 k(k + p) (kp)
xt x (K2 +m?)2((k + p)? + m?)
(kp)® k*(kp)?
1 L = —4A(0)\? / -2
- E fx o uxtuxt’A(uxt_ uxt’)- (A2) 4 5 (K2 + 7?2)3 (k2 N m2)4
, —_ = 2 — ~
= dA(O))\ (/k R +.. ) (tAw)
One also has to specify a cutoff procedure. For convenience, (A7)

we choseto set a mass term. This is justified at 1-loop order
since the results are universal, i.e., cutoff independent. At
second order, one would have to be more careful and use,
e.g., an external momentum IR cutoff.

Many of the diagrams which we need are identical to the
driven manifold problem ah=0. These diagrams are de-
tailed in[19]. The newdiagrams are (A8)

4 K
= A0 /’c e @(Vu)?

016121-18



FUNCTIONAL RENORMALIZATION GROUP FQR . ..

PHYSICAL REVIEW E 67, 016121 (2003

Therefore, we have the following correctionscton, A and 8

(settingl := [, [ 1/(k?*+ m?)2], dropping finite terms ire, but
for the moment keeping the explidtdependende

2(2—d)
d

5c/c={

Snln=—NA"(0M)I,

4 8 4
5>\/>\=[— am'(o+)— aA(O))\2+ aA(O))\Z}I,

SA(U)=2A(u)’\?l.

4
A'(O*)A—EA(O)AZ |

The coupling constant is:=\/c. Note that its flow vanishes csc< d77> 2 7Xd-4) 77x%(d-4)°
- -
d

at leading order in H We now check cancellations beyond

the leading order. We use

fk=Adf:dk K-t

The two diagrams proportional th’(0™) are

4
B /,c d (k2 + m?)3

(=2 +d) 7 esc(4F)

= A 4ms

—4k? 2

(2 —d) m csc(4F)
4ms

=Ad

k d (k2 +m2)® (k2 +m?)?

/ -8kt
k d (k2 + m2)*
(A9) A (—4+d?) 7 esc(4F)
= Aq4 2me (A18)
(A10) . / 4k
% d (k2 +m2)*
_ 4 =) mese() (A19)
24 me
/ 8kt 4k?
- i 3
rd(k2+m?)°  d(k?+m?)
(A11) _ _ dx
_ Ad(d 2) (d—1) m csc(%F) (A20)
12me
(A12)  The sum of the above three terms is
dm
(4—d)(d—2)7TCS 7
(A13) Aq A . (A21)
(Al4)  Note that
2| d=a" 12 2880
(A22)
So, working in a massive scheme, there are corrections at
(A15) order e, compared to the leading term which would be.1/
We see that the fixed point of Stepanf2?2] is—even if one
would accept his scheme—incorrect. However, as we have
already stated above, one should do the calculations in a
massless scheme.
APPENDIX B: LONG RANGE DISORDER
In this appendix we give a quick study of the case with
A6 long range disorder in internal spageWe show that one
(A16) recovers the Flory estimate of Sec. IV in the case of isotropic
depinning. For anisotropic depinning we find a runaway flow
and cannot conclude.
We study
1 5 {2 ’
Spo= 2 )t ,thZX,t,)\ A(Uy— Uy F(x—x"), (B1)
(A17) xtx

f(X)~x"“. (B2)

We find the FRG equation for the LR disorder:

The sum(which gives the renormalization af) exactly van-

ishes.
The corrections proportional t4(0) are

IA=€eA+A(0)A"+(2— w)[ANA'(07)+\2A(0)]A
(B3)
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with e=4—«, d large enough >« or more. We have A(u)=gcog27u), (B8)
absorbedeA in A with
dg=eg—(2m)%g>. (B9)
A= 2f(q). B4
qu(q) (@) B4 The correlations are
This is because the graphs leading to t)? functions or (uuy=A(0) @ ~q~(@+20 (B10)
more do not contribute. This remains true to all orders; in- aq

spection forh =0 shows that to two or three loops no cor-
rections arise, except anomalous tefmkich, as we will see
are not needed as we find analytic fixed poinSo for A

with = €/2 as if A(0) was uncorrected.
For nonperiodic disorder, rescalinggives

=0 the one loop result is probably exact to all orders. Z(u)=Z(0)e‘f”2’(GZ(0)), (B11)
The coefficientu comes from the corrections to the gra-
dient term {=¢€l3. (B12)
[NA'(0T)+N?A(0)]B, (B5)

Thus the Flory estimate is exact. Note that the fact that the

1 LR correlatorA (u) is analytic is not puzzling, since it gen-
B=— J x2f(x)C(x), (B6)  eratesinturn a SR part which should be nonanalytic in order
2d Jx to, e.g., successfully generate a depinning threshold force.
On the other hand, fox>0 we find that

2(d—4)
M=ZB/A=T, (B7) A(u)=gcog2mu), (B13)
_ 242 2.2
with =4, d>4 (note that it goes to 2 whed goes to 99=€g=(2m)°g"+ Y\'g (14
infinity). and there is thus a critical beyond which there is no fixed
One easily finds the fixed points for=0. For periodic  point. This seems also to be the case for RF. Because of this
disorder one has runaway flow we cannot conclude.
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